Inverse Problems, Design andOptimization Symposium

Rio de Jneiro, Brazl, 2004

SPACECRAFT THERMAL DESIGN WITH THE GENERALIZED EXTREMAL

OPTIMIZATION ALGORITHM

Roberto L. Galski, Fabiano L. de Sousa, Fernando M. Ramos and Issamu Muraoka
Instituto Naciond de Pesquisas Espaciais (INPE)
Av. dos Astronattas, 1758 - 12227-010 - Sao José dos Campos - SP - Brasil
galski@ccs.inpe.br, fabiano@dem.inpe.br, fernando@lac.inpe.br, issmu@dem.inpe.br

ABSTRACT

This paper describes an application of the
Generdized Extremd Optimization (GEO) dgarithm
to the inverse design of a spacecraft thermd control
sysem. GEO is a recently proposed globa search
meta-heuristic ™ @ B baged an @ model of natural
evolution 1, and spedally devised to be used in
complex optimization problems!®. Easy to implement,
GEO has only one free parameter to adjust, does not
meke use of derivatives and cen be gplied to
condrained a uncondrained problems, non-convex or
even digoint desgn spaces, with any combination of
continuous, discrete or integer variables. The
appli cation reparted here mncerns the optimum design
of a amplified configuration of the Brazilian Mullti-
misson Pafform (in Portuguese, Plataforma Multi-
Missio, PMM) thermd control subsystem, comprising
five radigtors and ane baitery heaer. The PMM is a
multi-purpose goace platform to be usad in dfferent
types of missons sich as Earth observation, scientific
or meteorologicd data colleding The design procedure
is tadkled as a multi-objective optimizaion problem,
conddering two criticd, operational hot and cold cases.
The reaults indicate the existence of non-intuitive, new
and more efficient design solutions.

LIST OF SYMBOLS
F(X)= Objective function;
Gi; = Conductive mnductancebetween panelsi andj;

k = Ranking positionfor agiven hi;

L = Total number of bits used to codify the
variables using GEO,;

Lj = Number of bits used to codify the j-th
variable using GEO,;

N = Number of design variables;
P, =Mutaion pobsbility for the k-th ranked bit;
Jex[1:5] = External radiation flux incident on

panels1to 5

Qin[1:5] = Heda generated by the equipments on
panels1to 5

R, = Radigtive ondittancebewean pendsi and;j;

To = Deep space &solute temperature;
T[1:6] = Vedor containing the absolute
temperatures on panels 1 to 6;
= Vedor containing the Cold Case (CC)
temperatures on panels 1 to 6;
Tee = Vector containing the Cold and Hot Case
(CHC) temperaturesonpanels 1to 6;

T

cc

The = Vedor containing the Hot Case (HC)
temperatures on panels 1 to 6;
T.w = Vedor containing the lower limits for

the temperatures on panels 1 to 6;
T, = Vedor containing the upper limits for
the temperatures on panels 1 to 6;

T, = Vedor containing the target
temperatures for panels 1 to 6;
X[1:5] = Design veriables1 to 5. (radiator areas

of panels 1 to 5, respedively);
X[6] = Sxth design \aridble (battery heder power);
X = Vedor containing the lower limits for
the design variables;
Xuax = Vedor with the upper limits for the
design variables;
= Absortivity of the radiator coating;
= Emissvity of the radiator coating;
T = Free paameter of the GEO and GEO,
dgaithms
™ = 1 optimum value for a given F(X);

MIN

INTRODUCTION

Many numeric techniques have been
developed to address optimizaion problems in
science and engineging @ ' [ n the very
beginning, the main concern was to find a
solution, by starting from a given point (or a set
of points) in the seach space &d using
information from the vicinities of that point(s). In
that sense, a solution was a point where no
additional improvement could be made on the
defined oljedive function, becaise dl points on
the neighborhood d the solution point led to a
worse value of the objedive function. Nowadays,
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those solutions are cdled locd solutions, locd
extremes, or subopima solutions of the
optimizaion problem, becaise they are totaly
dependent on the location of the starting point(s)
and there is no guarantee of any kind they are, in
fad, the optimal (global) solutions. These ealier
methods are cdled locd seach optimization
methods. There is no daubt about the usefulness
of such methods, since, by any means, a locdly
improved solution is better than a non-improved
one. Unfortunately, it is aso known, that many,
perhaps the maority, of the scientific and
engineging optimizaion problems are nonlinea,
multimodal and most of them subjed to several
restrictions on the variables ¥, This faa, plus the
incressing computational power of nowadays
computers, have increased the interest for global
optimization methods [, where the main concern
isnot to find only alocdly improved solution, but
a globally improved one, that is, the optimal
solution. In the last twenty yeas, a mnsiderable
number of global methods have been developed.
Most of them are based on natural phenomena
analogies, trying to copy the dficiency and
simplicity of observed self-optimized processesin
nature. Algorithms based on the evolution of
spedes 1% 14 on the annedingg] of metals ™2, on
the functioning of the brain ¥, on the immune
system 4 and even on the social behavior of ants
3 have been developed and used to get
optimized solutions for many science and
engineaing problems. Among them, perhaps the
most commonly used are Simulated Anneding
(SA) ', Genetic Algorithms (GAs) ¥ and their
derivatives. More recantly, it has been seen an
increasingly number of references formulating
and deding with optimizaion problems as
multiobjedive ones™®. Despite of being
computationally costly, a multiobjedive gproach
brings a mmplete set of optimal compromise
solutions to the problem, the so-caled Pareto™”
Frontier, and this is a powerful information to the
designer.

The Generalized Extrema Optimizaion
agorithm (GEO) 121 |ike SA and GA, is a
stochastic dgorithm, but unlikely these ones, it

has only one free parameter (T) to be set, instead
of threeor more. In this paper, the GEO agorithm
is used to found optimized radiator areas for the
PMM spacecraft considering two critical hot and
cold operational cases. In the following, both GEO
and PMM are described with further details.

THE GEO ALGORITHM

The Generdlized Extrema Optimizaion
(GEOR algorithm is a global search meta-heuristic
(4.2 8 'hased on amodel of natural evolution ',
and spedally devised to be used in complex
optimization problems ™. It has its fundaments on
the Self-Organized Criticdity (SOC) theory,
which has been used to explain the power law
signatures that emerge from many complex
systems 18,

A flowchart for GEO and its variant GEO, 4
(seenext paragraph) is presented in the Figure 1.
In the flowchart, F(X) is the objedive function, k
is the ranking value of the bit and L is the
number of bits of the design variable “j”.

Initialize randomly L bits that codify N
design variables

v
For each bit attribute a fitness value
> proportional to the gain or lossthat F(X) has
if the bit mutates, compared to the best F(X)
value found so far

G EO + G EOVaI’
Rank the bits (all) Rank the bits of each
according to their variable separately,

according to their fitness
values (N rankings)

h 4
M utate one bit of
each variable
with probab. P, U
k™, k=1,.,L;

fitnessvalues (one
ranking)

M utate one bit of
the population with
probab. P, O k™
, k=1,...,L

I

Stopping
criterion satisfied?

Return the best solution found during the search

Figure 1 —Flowchart for GEO and GEO, 4.

The GEO algorithm, as the SA and the GA, is
a stochastic method, does not make use of
derivatives and can be gplied to non-convex or
digoint problems. It can also ded with any kind
of variables, either continuous, discrete or integer.
The only one t free parameter alows the
praditioner to set up the determinism degree of
the seach, from a random walk (t = 0) to a
deterministic seach (1 - ). It has been
observed there is a T best value for ead problem
(sometimes a range), such that the global seach
efficiency is maximal. In this sense, such 1 value
can be cdled 1 optimum, . For most problems
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tadkled with GEO, what has been seen is that
remains in the 1 to 5 interval. GEO has one
variant, cdled GEO,4. A detailed explanation of
them, including application examples, can be
found in ' ¥, Here, both GEO and GEO,, will
be used for the aldressed optimization problem.

THE PMM SPACECRAFT

The Multi-Mission Platform (in Portuguese,
Plataforma Multi-MissGo - PMM) is a multi-
purpose space platform to be used in different
types of missions such as Earth observation,
scientific or meteorologicd. The PMM is a
concept of satellite achitedure that consists of
asembling in a platform al the necessry
equipment esential to the satellite, independent
of the orbit or pointing mode. In this kind of
architedure, there is a physicd separation
between platform and payload modules, which
can be developed, constructed and tested
separately, before the integration and final test.
There is also the alvantage of reuse of the
platform projea and reduction of the st for the
development of new satellit es.

Table 1. Multi-mission Platform charaderistics

Characteristics Value
Dimensions ImxImx1m
Mass 250kg
Power Consumption 150wV
Payload Power Suppy 175W

Orbit Inclinations nea equatorial (i<15°)
and sun-synchronous

600kmto 1200 kn

Orbit dtitudes

Attitude Earth, Sun or inertial
pointing

Maneuver cgabilities AV=150m/s

Daadorage caebility 2 Ghits

Figures 2 and 3 illustrate the PMM
configuration.

Payload

Multi-Misdon Platform

Figure 2 — Schematics of a payload attached to
the Multi-Mission Platform PMM.

Figure 3 —Simplified view of the PMM and its
panels 1 to 5showing some internal devices.

The main goad of the thermd design of a
soaceadft isto keep the temperature of the elements
of the vehicle within their required ranges. One of
the most important issies the satdlite thermal
enghneer has to address is the definition of the size
and pasition of the radiators. Radiators are areas of
the satellite mvered with high emissvity coating, so
that they can rged heat to space to keep the
temperature of the spaceaaft equipment within their
required design range during periods of high heat
disspation in the eectronic equipment and/or high
externd therma loads. On the other hand, these
areas must not be excealingly large so that, during
periods of low hed loads, the temperatures do not go
below the dlowed minimum. In the ese of the
PMM, radiators can be positioned in 5 of the 6 Sdes
of the platform body, since the top sde does not
“see” the space due to the payload mounted on it
(seeFigure 2).

In satellite therma design two critical situations
are usudly identified, where minimum and
maximum temperatures are expected to occur: i)
The Cold Case (CC), when the externd heat loads
(solar radiation, eath radiation and abedo) are
minimal, the satellite is operating with the lowest
heat dissipation in the electronic equipment, and the
thermal optical properties of its coaings are non-
degraded and; ii) The Hot Case (HC), when the
externd hea irradiation is maximal, the satelliteisin
operational mode with the highest hed dissipation
and the optica properties of the matings are
degraded. The thermal design shall manage the heat
flow in a way that, in both dtuations, the
temperatures of al eements remain within the
required range of temperature. There ae many
variables, such asthe size of radiators, that affect the
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temperature distribution, and the thermal engineer
has to find a cmbination of these variables to reach
a sdtisfactory design. This task needs a lot of
dmulations and analysis, considering the large
numbers of variablesinvolved.

In equipment where a drict control of the
temperature is required, such as in the batteries of
the PMM (panel 2), heaters are frequently used to
warm the euipment during the CC.  On the other
hand, as the electrical power supply is very limited
in a satellite, the power spent on the heaters must be
theleast posshle.

In this qudy a specific misson of the PMM was
analyzed, defined by equatoria orbit with atitude of
600 km and having the battery pand dways
painting to Earth along the orbit.

FORMULATION OF THE INVERSE DESIGN
PROBLEM

The objedive of the gplicaion of GEO to the
PMM thermd designisto reducethe time spent by the
engnee to find, not only a satisfadory but dso an
optimum (or quasi-optimum) design, a processthat is
done ftraditiondly “manudly”, with the thermd
designer runring multi ple analysis cases. In this paper,
adesgnisasst comprising five radiator aress and ane
battery heder power.

The optimizaion problem conddts in, by varying
the area of the radiators on each one of the 5 pands,
minimize the difference between the temperatures
cdculated for the CC and HC and given target
temperatures for ead pand, and a the same time
minimizethe battery heaer power disgpation.

As the sadlite is dill in the exly dtages of
development, a mplified numericd modd was made
only conddering the sx PMM ddes with the
equipment smulated as hed sources over ther
respedive pands. Pands 1 to 5 exchange hesat with
ead other, by conduction and/or radiation, and with the
Foace evironment, by radiation, through the radiators
placed an them. The top pand (not shown in Figure 3)
makes the interfac with the payload and is thermdly
isolated from it, but exchange hea with the other pandls
of the PMM.

Using the lumped parameter
representationt’® and assuming steady state
condition with orbit average heat loads, the hea
balance d ead one of the six panels leads to the
following equations:

‘6 6
5.G (T -TH)+ 3 Ry (T - T00)+
I= =

e X[ (T110 - T2)= Q1]+ X[1] Gou[1]

5.G,,(T21-Th)+ 3 Ry, (T2 - 01+ @
= ISt

+e X(2)(T[2* ~T2)= Quul2 +o X[2]qul2] +X[6]

ﬁieg,j(T[sl—Tm)i Ry (T3 -TH)+ @)
i= IE

+e X[3] (T[31 - T2)= Q. [3] #o X[3] quu[3]

5 G (TH41-TH)+ 5 Ray (T4 ~TE")+ (4
= =

e X141 (T[41" ~T2)= Q4] +o X[4] Gul4]

5 Gy (T8I Th)+ 5 Ry, (1181 -T01)+ (9
= =

+o X[5] (T15]* - T2)= Q,[5] +a X[5]qeel5]
3 Ge,(T16-T0) + 3 Ry, (T161* ~T11¢) =0 ©
=1 =L

For a given X, the solution of the system of
agebraic equations (1) to (6) results in two set of
temperaures Tcc(X)[1:6] if CC conditions were
goplied (minimum vaues of Qi , e and a) and
Trc(X)[1:6] if HC conditions were gpplied (maximum
vaues of of Qi , Jec ad ). The coefficients of the
equations (1) to (6) and the solution of the system of
equation are obtained by mean of INPE PCTER
thermal software package™, which was coupled to the
optimization agorithm.

Condraints are posed to the panels temperatures,
which mug lie indde required design intervals. The
target temperature and dlowed range for each pand are
defined asafunction of the thermd requirements of the
equipment mounted on the respective pand.

Mathematicdly, the multiobjective problem of
minimizing the differences between the target and the
operationd temperatures for both CC and HC, and of
minimizing the battery heeter power is formulated as a
mono-objective  optimizaetion problem, assuming
unitary weighting factors™@ before each term of the
objective function:

Minimize F(X)= [[Tcc(X)-Trll,

+[The(X)-T+ll, + X[6] (7)
SUthO XMIN < X < XMAX
Tuin £ TeeX) £ Tuax
Tuin € Tue(X) = Tuax
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Heredfter, the complete optimization problem will
be referred to asthe Cold and Hot Case (CHC).

Addtiondly, the CC and the HC are formulated
and s0lved as optimizaion problems sparatdy. The
idea is to gt some indght by comparing these
separated CC and HC solutions with the combined
Cold and Hot Case (CHC) solutions, defined in
equetion 7. Mathematicdly, the CC and HC
optimization problems are dated asfollows.

Cold Case (CC):

Min. F(X)= Min |[Tec(X)-Trll, (8)
SUbJ to: Xpin < X < XMAx
Tuin € TeeX) £ Tumax
Hot Case (HC):
Min. F(X)= Min [[Tuc(X)-Tll, ©)
SUbJ to: Xpin < X < XmaAx
Tuin S The(X) £ Tmax

It isimportant to noticethat in the CC and HC
above, X = X[1:5] = areaof radiators on panels 1
to 5, respedively (there is no X[6]). Besides that,
there is no battery heaer being used in the CC
and HC stand-alone cases.

RESULTS

Table 2 summarizes the limits on the design
variables, the operational temperature limits, as
well as the internal hea dissipation from the
eledronic devices applied to the panels.

Table 2 - Design variable limits, operational
limits and panel hea dissipation.

Panel
112(3|4]|5]6Y

Xmn 00| 00| 00| 00| 00| -

Parameter

Radiator
arealimits
(m2) 2)

Xmex|09040952095209520957 -

Temperature Tmin| 50 |-100|-200|-200|-100| 200
I|m|ts) (°C)
3

Trmex|+500+200+500+450+450+500

Target Tr
temperature (°C) [P223+150+150+125+175+150
Internal
cC
hea
d'SSDf‘!)O” HC | 400| 475 272 550| 905| 00
DTop panel of the PMM, thermally isolated from the
payload. 2The 6" element of this parameter exists only
for CHC and is not a radiator area It represents the

150(130° 86 | 400|200| 00

heaer power on panel 2 for the CHC, with the
following limits: Xy n[6] =0 W and Xyax[6] =65 W.
9The temperature limits of each panel were determined
acording to the most restrictive ejuipment mourted on
it. “The internal hea disspation of eac panel is the
summation d the hea disdpation of al equipment
mourted on the respedive panel. “For the CHC, in
addition to the minimum hea disdpation of the
equipment on this panel, the battery heaer disdpatesin
therange 0.0 < X[6] < 65.0 W.

Each design \ariable was encoded in 7 bits, whet
means a resolution better than Q01 m? and 10 W for
the radiator aea and the heder disspation,
respedively.

The search for optimal desgns was made for
different values of T within the range [0.0, 5.0], usnga
05 gepsze inorder tofind T =1*. Asthe problemisa
computetionaly cogtly one, the number of function
evauations (NFE) for each T was %t to 5 x10° andan
average of 25 independent runs was taken. A more
detail ed descriptionisgiven blow. The following Steps
were performed (here, GEO means GEO/ GEO,4):

a) Run GEO with 5x10° furction evauations, 25
independent runs (25 different seeds) for eech t of
thes{0.0,05,1.0,1.5,2.0,253.0,354.04550];

b) For each T in @), cdculate the average value of the
25 F(Xbest) found, where Xbest = best solution
fourd after 5x10° furction evauations. Three
different procedures were used to caculae the
average, as follow (so, three different averages
were obtained):

b.1) From the 25 runs, cdculate the average
using only those where afeasible solution
ocaured;

b.2) Cdculae the average usng dl 25 rums
For the infeadble solutions, use the vdue
of the worgt feasible solution found,;

b.3) From the 25 runs, get the best FH(Xbest)
found asthe average.

¢) Plot the three curves"average F(Xbest) versusT";

d) For each curvein c), locate the minimum;

€) Cdculate the average of the three vaues obtained
in d and useit asthet*.

The Table 3 shows the T = ™ cdculated as
explained above.

Table 3 —1* found for CC, HC and CHC.
Case CcC HC CHC
Algaithm| GEO | GEQ,s| GED | GEQ,s| GO | GEQ,
T 27132 |13|13|20]| 23

After that, the T values were used and 25 rurs
were performed for esch case, ead of them stopped
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after 10° function evaluations. The best designs fourd
with GEO and GEO, for ead cazarein Table 4.

Table4 —Best designsfor CC, HC and CHC.

CaseAIr?rzﬁ FOO) X2 [X[21 X131 [X[4] | X[5]| X[ 6]

GEO 140180.001/0.0620.0480.251/0030 -
CEOw4.3600.0080.0620.0350271/0027 -

GEO |14870.02804330.1430.3590457 -
CEOw 1 7890.02804330.12903720457 -

GEO |1421/0.83804330.0550.0420044 573
CEO14250.6760.4600.08900080.072 497

CC

HC

w w w
v v

R |

-
—&— Aun

0.8 — CHC - Awax
| (GEO, T=2,0) —&— Acc

—— Ay

(m?)
\

Radiator Area

* *
2

3
PANEL

Figue4 - Radiator areasfor CC, HC and CHC (GEO)

—— Tyn
—¥— Tuax
80 —oe— T

cc
(GEO, T=267)

Temperature (°C)

3 4
PANEL

Figure 6 - Resulting temperatures for CC (GEO)

From the results down on Teble 4 it can be seen
that bah GEO and GEO,, have found very close
design solutions for CC and HC. For CHC, the design
solutions differ condderably, but bath have very close
F(X) values, meaning, possbly, the existence of severa
quas-optimal solutions.

Fgues 4 and 5 present, for GEO and GEQ,4,
respedively, the radiator areas obtained for CC, HC
and CHC. The lower and upper limits for the radiator
area of eath pand are ds0 presented. Andyzing these
figures, it is possble to conclude that an intuitive
solution based on ali near interpol ation between the CC
and HC solutions would not lead to the solution
obtained for CHC.

The temperatures on the pandls, caculated with the
dataof Table2 are shownon Figures6to 11

1 —
w w w
v v

—

08— CHC
(GEO,,, T=2,25)

R |

—— Ay
—— Apax
—6— Acc
—— Ayc

o
o
|

Radiator Area (m2)
Il

- *
2

4 5

3
PANEL

Figue5 - Radiator areasfor CC, HC and CHC (GEQ,)

—a— Tyn
—¥— Tyax
80 4 |—=—T¢

—— T

cc
(GEO,, , T=225)

Temperature (°C)

-40 7 I I I I

1 2 3 4 5
PANEL

Figue7 - Resulting temperaturesfor CC(GEQ,,)



Inverse Problems, Design and Optimization Symposium

Rio de Janeiro, Brazil, 2004

—— Ty
— % Tuax HC
(GEO, T=1,33)

80 —e—T;

o
o

Temperature (°C)

40 I I I I \

1 2 3 4 5 6
PANEL

Figure 8 - Resulting temperatures for HC (GEO)

—— Tyn
—F— Tuax CHC
80 - | —4— Tec (GEO, T=2,0)
—)(—THC
| |—e—T
;J N
@ 40
p=
s
2 ¢
e
R
o
y
-40 I I I I \
1 2 3 4 5 6

PANEL

Fgure 10 - Reaulting temperaturesfor CHC (GEO)

What can be readily seen is that, for CC and HC,
the optimized design solutions brought the resulting
pands temperatures very close to the target
temperatures. That is not the case for CHC, where most
pands temperatures are far from the target
temperatures. In fact, some of them are at the
limit temperatures of the respective panel. Despite
of having different values on the design variables,
both CHC solutions had the panels 1, 2 and 5 as
those where temperatures are at the limit.

Another important observation is that, though
being numerically quite close in the F(X) value,
from an engineering point of view, the GEO,4
solution for CHC is quite different from the GEO
solution. The first needs only 49.7W for the
heater power (X[6]), against 57.3W of the
second. Remembering that X[6] is the third term

—&— Tun
— v Tuax HC

80 4 |—e—T¢ (GEOvar' T:1!33)
—+— Ty

IS
o
[

Temperature (°C)

40 I I I I \

1 2 3 4 5 6
PANEL

Fgure9 - Resulting temperaturesfor HC (GEQ,,)

—a— Ty
— v Tuax CHC
(GEO,,,, T=2,25)

80 —— T

IS
o

Temperature (°C)

3 4
PANEL

Fgure11 - Reaulting temperaturesfor CHC (GEQ,4)

of F(X) and, as both solutions have almost the
same F(X), the counterpart is that the 49.7 W
solution has a worst performance on the first two
terms (temperature part) of F(X), in order to
reestablish the equality. In our opinion, the main
point is the possbility of choice between
these two equivalent solutions. The designer can
possibly decide which one is better by
considering other quantifiers, not present in the
formulation of F(X), just because they were not
thought about or even because they were too
difficult to quantify. Examples of such quantifiers
are assembly easiness, durability, and robustness,
just to mention a few. This possibility only exists
if one has some knowledge about the existence of
such equivalent optimal solutions.
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CONCLUSION AND FUTURE DIRECTIONS

In this paper the inverse design of the thermal
control system of the PMM gpacecraft was done
successfully. The design solutions found were non-
intuitive ones, unlikely to ocaur as posshilities for a
human designer. The optimizing procedure chosen,
the GEO agorithm, has shown to be a vauable
optimal design tool, being not only easy to
implement but also, easy to have its T parameter set to
the particular gpplication tadkled. The gpplication
itsdf has proven to be avery redrictive one, even
when the HC and CC cases were @mnsidered alone.
The urfeaible desgn space was considerably large.
However, this posed no difficulties on the GEO
functioning, as expeded. Based on the two design
solutions found for CHC, and on the @mndderations
dready made about them, it seemsto bevaluable & a
future development to formulate and solve the CHC
as a multiobjective problem. For ingtance, we may
define the sum of the first two terms of the F(X)
equation for CHC as one ohjective (f;) and the hester
power as the second objective (f,). In this case, the
Pareto frontier is a curve on the f; x f, objective space
where each pant of the curve establishes an gptimal
compromise between these two objectives This
dlows the designer to look at the whole set of such
solutions and choose the mogt gppropriated one. In
fact, the two solutions given by GEO and GEQ,, for
CHC belong to the Pareto frontier.
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